Skip to contents

In a research project, data collection can take place at multiple locations and times. At each location and time, there often multiple collected samples to capture variation in a study area or time-period. In Darwin Core, the data collected from this type of project is Event-based.

Events are any action that “occurs at some location during some time.” (from TDWG). Each sample, for example, is a unique event, with its own environmental attributes (like topography, tree cover and soil composition) that affect what organisms occur there and how likely they are to occur. Observations of organisms take place within each Event. As such, Events add hierarchy to a dataset by grouping simultaneous observations into groups, as opposed to Occurrence-only data which is processed as if all occurrences are independent. Event-based data collection adds richness to ecological data that can be useful for more advanced modelling techniques.

Here we will demonstrate an example of how to convert Event-based data to Darwin Core standard. To do so, we will create two csv files, events.csv and occurrences.csv, to build a Darwin Core Archive.

The dataset

For this example, we’ll use a dataset of frog observations from a 2015 paper in PLOS ONE. Data were collected by volunteers using 5-minute audio surveys, where each row documents whether each frog species was detected over that 5-minute recording, recorded as present (1) or absent (0). For the purpose of this vignette, we have downloaded the source data from Dryad, reduced the number of rows, and converted the original excel spreadsheet to three .csv files: sites, observations and species list.

Sites

The sites spreadsheet contains columns that describe each survey location (e.g. depth, water_type, latitude, longitude) and overall presence/absence of each frog species in a site (e.g. cpar, csig, limdum). We won’t use the aggregated species data stored here - we’ll instead export the raw observations - but we’ll still import the data, because it’s the only place that spatial information are stored.

library(readr)
library(readr)
library(dplyr)
library(tidyr)
sites <- read_csv("events_sites.csv")

sites |> rmarkdown::paged_table()

Observations

The observations spreadsheet contains columns that describe the sample’s physical properties (e.g. water_type, veg_canopy), linked to sites by the site_code column. More importantly, it records whether each species in the region was recorded during that particular survey (e.g. cpar, csig, limdum).

obs <- read_csv("events_observations.csv")

obs |> rmarkdown::paged_table()

Species list

Finally, the species list spreadsheet lists the eight frog species recorded in this dataset, and the abbreviation column contains the abbreviated column name used in the observations dataset.

species <- read_csv("events_species.csv")

species
#> # A tibble: 8 × 3
#>   scientific_name            common_name            abbreviation
#>   <chr>                      <chr>                  <chr>       
#> 1 Crinia parinsignifera      Plains Froglet         cpar        
#> 2 Crinia signifera           Common Eastern Froglet csig        
#> 3 Limnodynastes dumerilii    Pobblebonk             limdum      
#> 4 Limnodynastes peronii      Striped Marsh Frog     limper      
#> 5 Limnodynastes tasmaniensis Spotted Grass Frog     limtas      
#> 6 Litoria peronii            Emerald Spotted Frog   lper        
#> 7 Litoria verreauxii         Alpine Tree Frog       lver        
#> 8 Uperoleia laevigata        Smooth Toadlet         ulae

Prepare events.csv

As the observations spreadsheet is organised at the sample-level, where each row contains multiple observations in one 5-minute audio recording, we can create an Event-based dataframe at the sample-level to use as our events.csv.

First, let’s assign a unique identifier eventID to data, which is a requirement of Darwin Core Standard. Using set_events() and composite_id(), we can create a new column eventID containing a unique ID constructed several types of information in our dataframe.

obs_id <- obs |>
  select(site_code, year, any_of(species$abbreviation)) |>
  set_events(
    eventID = composite_id(sequential_id(), site_code, year)
    ) |>
  relocate(eventID, .before = 1) # re-position
#> ⠙ Checking 1 column: eventID
#>  Checking 1 column: eventID [314ms]
#> 

obs_id
#> # A tibble: 123 × 11
#>    eventID    site_code  year  cpar  csig limdum limper limtas  lper  lver  ulae
#>    <chr>      <chr>     <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>
#>  1 0001-AMA1… AMA100     2004     1     0      0      0      1     1     0     0
#>  2 0002-AMA1… AMA100     2007     1     0      1      0      1     0     0     0
#>  3 0003-AMA1… AMA100     2007     1     0      1      0      1     0     0     0
#>  4 0004-AMA1… AMA100     2005     1     1      1      0      1     0     0     0
#>  5 0005-AMA1… AMA100     2008     1     0      1      0      0     1     0     0
#>  6 0006-AMA1… AMA100     2008     1     0      1      0      1     1     0     0
#>  7 0007-AMA1… AMA100     2013     1     0      1      0      1     0     0     0
#>  8 0008-AMA1… AMA100     2008     1     0      1      0      1     1     0     0
#>  9 0009-AMA1… AMA100     2013     1     1      0      0      0     0     0     0
#> 10 0010-AMA1… AMA100     2014     1     1      1      0      1     0     0     0
#> # ℹ 113 more rows

Next we’ll add site information from the sites spreadsheet. Then we use set_coordinates() to assign our existing columns to use valid Darwin Core Standard column names, and add 2 other required columns geodeticDatum and coordinateUncertaintyInMetres.

obs_id_site <- obs_id |>
  left_join(
    select(sites, site_code, latitude, longitude),
    join_by(site_code)
    ) |>
  set_coordinates(
    decimalLatitude = latitude, 
    decimalLongitude = longitude,
    geodeticDatum = "WGS84",
    coordinateUncertaintyInMeters = 30
    ) |>
  relocate(decimalLatitude, decimalLongitude, .after = eventID) # re-position cols
#> ⠙ Checking 4 columns: coordinateUncertaintyInMeters, decimalLatitude, decimalLo
#> ⠹ Checking 4 columns: coordinateUncertaintyInMeters, decimalLatitude, decimalLo
#>  Checking 4 columns: coordinateUncertaintyInMeters, decimalLatitude, decimalLo
#> 

obs_id_site
#> # A tibble: 123 × 15
#>    eventID   decimalLatitude decimalLongitude site_code  year  cpar  csig limdum
#>    <chr>               <dbl>            <dbl> <chr>     <dbl> <dbl> <dbl>  <dbl>
#>  1 0001-AMA…           -35.2             149. AMA100     2004     1     0      0
#>  2 0002-AMA…           -35.2             149. AMA100     2007     1     0      1
#>  3 0003-AMA…           -35.2             149. AMA100     2007     1     0      1
#>  4 0004-AMA…           -35.2             149. AMA100     2005     1     1      1
#>  5 0005-AMA…           -35.2             149. AMA100     2008     1     0      1
#>  6 0006-AMA…           -35.2             149. AMA100     2008     1     0      1
#>  7 0007-AMA…           -35.2             149. AMA100     2013     1     0      1
#>  8 0008-AMA…           -35.2             149. AMA100     2008     1     0      1
#>  9 0009-AMA…           -35.2             149. AMA100     2013     1     1      0
#> 10 0010-AMA…           -35.2             149. AMA100     2014     1     1      1
#> # ℹ 113 more rows
#> # ℹ 7 more variables: limper <dbl>, limtas <dbl>, lper <dbl>, lver <dbl>,
#> #   ulae <dbl>, coordinateUncertaintyInMeters <dbl>, geodeticDatum <chr>

We now have a dataframe with sampling and site information, organised at the sample-level. Our final step is to reduce obs_id_site to only include columns with valid column names in Event-based datasets. This drops the frog species columns from our dataframe.

events <- obs_id_site |>
  select(
    any_of(event_terms())
    )

events
#> # A tibble: 123 × 6
#>    eventID           year decimalLatitude decimalLongitude geodeticDatum
#>    <chr>            <dbl>           <dbl>            <dbl> <chr>        
#>  1 0001-AMA100-2004  2004           -35.2             149. WGS84        
#>  2 0002-AMA100-2007  2007           -35.2             149. WGS84        
#>  3 0003-AMA100-2007  2007           -35.2             149. WGS84        
#>  4 0004-AMA100-2005  2005           -35.2             149. WGS84        
#>  5 0005-AMA100-2008  2008           -35.2             149. WGS84        
#>  6 0006-AMA100-2008  2008           -35.2             149. WGS84        
#>  7 0007-AMA100-2013  2013           -35.2             149. WGS84        
#>  8 0008-AMA100-2008  2008           -35.2             149. WGS84        
#>  9 0009-AMA100-2013  2013           -35.2             149. WGS84        
#> 10 0010-AMA100-2014  2014           -35.2             149. WGS84        
#> # ℹ 113 more rows
#> # ℹ 1 more variable: coordinateUncertaintyInMeters <dbl>

We can specify that we wish to use events in our Darwin Core Archive with use_data(), which will save events as a csv file in the default directory data-publish as ./data-publish/events.csv.

events |> use_data()

Prepare occurrences.csv

Let’s return to obs_id_site, which contains an eventID and site information for each sample. To create an Occurrence-based dataframe that conforms to Darwin Core Standard, we will need to transpose this wide-format dataframe to long format, where each row contains one observation. We’ll select the eventID and abbreviated species columns, then pivot our data so that each species observation is under abbreviation and each presence/absence recorded under presence.

obs_long <- obs_id_site |>
  select(eventID, any_of(species$abbreviation)) |>
  pivot_longer(cols = species$abbreviation,
               names_to = "abbreviation",
               values_to = "presence")

obs_long
#> # A tibble: 984 × 3
#>    eventID          abbreviation presence
#>    <chr>            <chr>           <dbl>
#>  1 0001-AMA100-2004 cpar                1
#>  2 0001-AMA100-2004 csig                0
#>  3 0001-AMA100-2004 limdum              0
#>  4 0001-AMA100-2004 limper              0
#>  5 0001-AMA100-2004 limtas              1
#>  6 0001-AMA100-2004 lper                1
#>  7 0001-AMA100-2004 lver                0
#>  8 0001-AMA100-2004 ulae                0
#>  9 0002-AMA100-2007 cpar                1
#> 10 0002-AMA100-2007 csig                0
#> # ℹ 974 more rows

Now we’ll merge the correct names to our frog species by joining species with obs_long.

obs_long <- obs_long |>
  left_join(species, join_by(abbreviation), keep = FALSE) |>
  relocate(presence, .after = last_col()) # re-position column

Now we can reformat our data to use valid Darwin Core column names using set_ functions. Importantly, Darwin Core Standard requires that we add a unique occurrenceID and the type of observation in the column basisOfRecord.

obs_long_dwc <- obs_long |>
 set_occurrences(
   occurrenceID = composite_id(eventID, sequential_id()),
   basisOfRecord = "humanObservation",
   occurrenceStatus = dplyr::case_when(presence == 1 ~ "present",
                                       .default = "absent")
   ) |>
 set_scientific_name(
   scientificName = scientific_name
   ) |>
 set_taxonomy(
   vernacularName = common_name
   )
#> ⠙ Checking 3 columns: occurrenceID, basisOfRecord, and occurrenceStatus
#>  Checking 3 columns: occurrenceID, basisOfRecord, and occurrenceStatus [918ms]
#> 
#> ⠙ Checking 1 column: scientificName
#>  Checking 1 column: scientificName [310ms]
#> 
#> ⠙ Checking 1 column: vernacularName
#>  Checking 1 column: vernacularName [311ms]
#> 

obs_long_dwc
#> # A tibble: 984 × 7
#>    eventID          abbreviation occurrenceID     basisOfRecord occurrenceStatus
#>    <chr>            <chr>        <chr>            <chr>         <chr>           
#>  1 0001-AMA100-2004 cpar         0001-AMA100-200… humanObserva… present         
#>  2 0001-AMA100-2004 csig         0001-AMA100-200… humanObserva… absent          
#>  3 0001-AMA100-2004 limdum       0001-AMA100-200… humanObserva… absent          
#>  4 0001-AMA100-2004 limper       0001-AMA100-200… humanObserva… absent          
#>  5 0001-AMA100-2004 limtas       0001-AMA100-200… humanObserva… present         
#>  6 0001-AMA100-2004 lper         0001-AMA100-200… humanObserva… present         
#>  7 0001-AMA100-2004 lver         0001-AMA100-200… humanObserva… absent          
#>  8 0001-AMA100-2004 ulae         0001-AMA100-200… humanObserva… absent          
#>  9 0002-AMA100-2007 cpar         0002-AMA100-200… humanObserva… present         
#> 10 0002-AMA100-2007 csig         0002-AMA100-200… humanObserva… absent          
#> # ℹ 974 more rows
#> # ℹ 2 more variables: scientificName <chr>, vernacularName <chr>

We now have a dataframe with observations organised at the occurrence-level. Our final step is to reduce obs_long_dwc to only include columns with valid column names in Occurrence-based datasets. This drops the abbreviation column from our dataframe.

occurrences <- obs_long_dwc |>
  select(
    any_of(occurrence_terms())
    )

We can specify that we wish to use occurrences in our Darwin Core Archive with use_data(), which will save occurrences as a csv file in the default directory data-publish as ./data-publish/occurrences.csv.

occurrences |> use_data()

In data terms, that’s it! Don’t forget to add your metadata using use_metadata_template() and use_metadata() before you build and submit your archive.

Summary

The hierarchical structure of Event-based data (ie Site -> Sample -> Occurrence) adds richness, allowing for information like repeated sampling and presence/absence information to be preserved. This richness can enable more nuanced probabilistic analyses like species distribution models or occupancy models. We encourage users with Event-based data to use galaxias to standardise their data for publication and sharing.